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A general twinning matrix applicable to any crystal system is developed in tensor notation. The sym- 
metry of the cubic system results (1) in the equivalence for twinning of orthogonal planar groups, (2) 
in successive twinning yielding the same lattice as twinning on certain higher order planes. Selection 
rules for the calculation of interstitial points in cubic systems show that the generalized reciprocal lattice 
has a periodicity which is the product of (h)  2 = ( h l )  z-4- (//2) 2 + (//3) 1 and of the periodicity of the host 
lattice. Double diffraction produces, in the generalized lattice of all possible relpoints, a large number 
of points additional to the twin points. In general, the periodicity of noncubic systems is infinite. The 
hexagonal system, both close-packed and rhombohedral, is treated. Lattice transformations may permit 
a pseudo-cubic approximation to the generalized lattice. 

Introduction 

When a crystal is twinned, it is well known that addi- 
tional spots due to the twin structure may appear in 
the diffraction pattern. If a twin spot is sufficiently 
intense, the beam producing it acts as an additional 
primary beam and may produce a complete additional 
pattern, a process called double diffraction (Burbank 
& Heidenreich, 1960; Pashley & Stowell, 1963). The 
generalized r~ciprocal lattice with twinning and double 
diffraction is the array of all possible reciprocal lattice 
points so occurring for twinning on all planes of a 
particular form. Still more points must be added if 
possibl~ multiple diffraction is considered. 

Formulae for twinning in any of the seven crystal 
systems have been given by Andrews & Johnson (1955) 
using conventional crystallographic notation. Crocker 
(1965) has developed formulae using tensor notation 
and applied them to the rhombohedral system. Kelly 
(1965) has presented an extension of the calculations 
of Meireran & Richman (1963) for the cubic system, 
exhibiting the twin points in stereographic projection. 
This projection becomes quite complicated for the 
generalized lattice with double or multiple diffraction. 
Johari & Thomas (1964) used Buerger's method to 
obtain the matrix for twinning on the cubic system. 

In the present paper, the twinning matrix in tensor 
notation is simply derived. Orthogonal planar groups 
in the cubic system are shown to be equivalent for 
twinning and general selection rules for the twin reci- 
procal lattice points are developed. The size of the re- 
peating unit is (h) 2 times that of the basic reciprocal 
lattice; in noncubic systems (h) 2 is commonly not an 
integer, and the size is an integral multiple of (h) 2 which 
may be very large or infinite. Successive twinning on 
{111} or the equivalent {211} planes is shown to be 
equivalent to single twinning on the orthogonal pair 
{221}, {411} in second generation twinning, and may 

or may not be equivalent in third and fourth generation 
twinning to {511}, {552} and {744}, {877} twinning. 

Tensor notation 
For use of this notation in crystallography, the co- 

variant system of unitary vectors (ala2a3) is taken as 
the sides of the unit cell. The contravariant or reci- 
procal unitary system [alaZa3] is defined by at .  aJ = ~{ = 

{10: i ~ } .  Subscripts and superscripts denote co- and con- 

travariancy. A vector, or in fact any physical quantity, 
is invariant to changes in the frame of reference (unless, 
as in relativity theory, one is moving with respect to 
the other) and is denoted by the product of co- and 
contravariant quantities, such that the number of sub- 
scripts equals the number of superscripts. The metrical 
and reciprocal metrical tensors and matrices denoted by 

llm~jll = liar. ajll and IlmCJll = Ila ~ . aJll, i , j= 1,2,3 (1) 

are respectively doubly co- and doubly contravariant. 
The summation convention due to Einstein is that 
whenever a letter symbol appears twice in a product, 
summation from 1 to 3 is directed. Thus an atomic 
lattice vector r = rlal + r2a2 + r3a3 = ria~ is the sum of the 
products of contravariant coefficients r~ and the co- 
variant unitary vectors at. Similarly a reciprocal lattice 
vector h=h~a~; the covariant coefficients hi are the 
Miller indices. Either vector could be expressed on the 
other system, but the coefficients would not in general 
be integers. Parentheses around a letter indicate that 
the following superscript denotes a power. Thus r .  r = 
( r )  2 = mi~rtr ~ and h.  h = (h) z = mt~h~h~. 

I. The twinning transformation 

Reflection in a plane whose normal is the relvector 
h=h la  l+hzaz+hza 3 changes the vector r to the twin 

vector r =  r -  2(r. h)h/(h) 2 (2) 
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which can be represented by the matrix T operating 
on the coefficients [rarzr 3] of r, with 

2 
T=  I -  -(h)T Ilm~Jll × llh~hjll • (3) 

I is the idemfactor. Rotation, equivalent to reflection 
in all systems with a center of symmetry, is given by 
the negative of T. T is invariant, and I TI = -  1. By 
writing the invariant vector r 

r = ria~ = a~r~ = (a~T -~)(Tr~) (4a) 

it is evident that the unitary vectors (a~a2a3) transform 
by T -a operating in reverse order; i.e., by the transpose 
of T -~ operating on (a~a2a3) in the normal order. Sim- 
ilarly 

h=h~a~=(h~T-X)(Ta~)=(Tff ~h~)(Ta ~) (4b) 

No restriction has been imposed on the unitary system. 

2. The cubic system 

The T-matrix simplifies to 

1 (h2)2 

designated by the form {h(a). h(2)} = 0. Except for the 
{11 I}, {211} pair, a one-to-one correspondence exists. 
A second property is that the square of the magnitude 
of h(2 ) is double that of h(1), i.e., (h(z))z=2(h(~)) 2. In 
certain cases, one or both of these properties may be 
shared by another h(z) group, e.g., b(1)={511}, h~z)= 
{552}, {721}. Calculation of the matrices shows that 
only one, {552}, is equivalent to {511}. It is character- 
istic of orthogonal pairs of groups that the vectors in 
each group are not orthogonal among themselves. 
Pairs of groups such as {210}, {310}, each of which 
has orthogonal vector pairs, do not have the property 
{h(1) • h(2) }- -  0, although the condition (h(2)) 2 = 2(h(1)) 2 
is satisfied. 

2.2 Selection rules for twhl relpoints interstitial in the 
host lattice 

The vector p = Tg is 

2 
P = (gxg2g3)-- --~ (hlgl+h2gzWh3g3) (hlh2h3). (6) 

+ (h3) 2 -  (hi) 2 - 2hlh2 - 2hlh3 
-2hzhl (h3)2W(hl)Z-(h2) 2 - 2h2h3 
-2h3hx -2h3h2 (ha)2+(h2)Z-(h3) 2 

(5) 

The high symmetry of the cubic system is reflected in 
the fact that T= Ttr= T -~ = Tffl. * 

2.1 Equivalence of  planar groups 
Because the cubic system is isometric and orthogonal 

with a center of symmetry, axes can be interchanged 
or reversed. Matrices belonging to two orthogonal 
planes such as (111), (211) can be made identical by 
interchange and change of sign of columns. Thus 

1 2. T(~ll ~ 2 
T~11~)= 2. 2 1 i 2 

The matrix Ttx~l) operating on (glgzg3) yields the same 
vector as Tdl~) operating on -(gtg3g2). Since both 
vectors g are in the group {glg2g3}, the matrices are 
equivalent. The three {211} planes normal to (111) all 
yield such equivalent matrices. Reflection in planes 
(211), (12.1), (112.) thus yields a twin reciprocal lattice 
identical with that produced by reflection in the (111) 
plane. The composition planes, on which the reflections 
actually occur, are of course different and yield dif- 
ferent traces in micrography of the crystal. But no such 
distinction occurs in the reciprocal lattice, which oc- 
cupies all space. It follows that the generalized recip- 
rocal lattices produced by {111} and {211} twinning 
are identical. Other pairs of groups have the same 
property: if h(~), h(2) represent vectors respectively in 
the lower and higher index group, orthogonality be- 
tween individual planes, one in each group, may be 

* The matrix terms appear  to be doubly covariant  only 
because Ilm*Jll = I  in the cubic system. 

(hah2h3) are mutually prime, but (h) 2 may be odd or 
even. When it is odd, let 2(hlgl + h2gz + h3g3) = l(h) 2 -  n. 
Then 

n 
p =  [(g~- lh~)(g2-1h2) (g3-  lh3)] + - ~ 2  (hlh2h3) . 

Or in group form 

n {hlh2h3} (7) {PlP2P3} = {qlqzq3} + -(h)- 2- 

{qlq2q3} is a group of host lattice points from which 

n {hlh2h3} proceed to twin points fractional vectors -(-h)F 

interstitial in the host lattice. The integer l can be 
chosen so that n takes on only the values 0, + 1, + 2 , . . .  

+ ____(h) 2 - 1  . When (h) 2 is even, it is replaced by the odd 
- 2 
quantity (h)2/2, but {hlhah3} are left unchanged. The 
value n = 0  is eliminated because it corresponds to a 
twin point coinciding with a host relpoint. 

The general selection equation is obtained by squar- 
ing equation (7). 

2X h~q~ = (h)2 [ (p )2 - (q )2 ] -n .  (8) 
n 

This is a generalization of the Pashley & Stowell (1963) 
calculation for (111) twinning. In the important case 
of {111} twinning n has only the value + 1 and hence 
(p)2_ (q)2 must be odd. Hence, if N is any integer, 

+ ql + q2 + q3 = 3N+ 1 (8.1) 

for a simple cubic lattice where (glg2g3) are unrestricted. 
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When  (glg2g3) are restricted, as for centered and dia- 
mond  lattices, it may be noted that the matrices T(m) 
have rows composed of one odd and two even integers 
and hence that  (h)2{plpzp3} has the same restriction 
as (glgzg3). Since {hlh2h3}= {111} are all odd, (qlq2q3) 
are all odd when (glg2g3) are all even and vice versa, 
and one odd when (gag2g3) is one even. The selection 
equations become: 

(h) 2 - 1  
X hiqi = 2(h)2N+ 2 [(g)2 e v e n ]  (8.2) 

X hiq~ = 2(h)ZN+ 3(h)2-1 2 [(g)2 odd] (8.3) 

in which (h) 2 is replaced by (h)2/2 if  (h) 2 is even. For  
{111} twinning 

+ qx + q2 +_ q3 = 6 N +  1 [(g)2 even] 
6 N + 4  [(g)2 odd] .  (8.4) 

The factor mult iplying N may be called the periodicity 
of the generalized lattice. It is the product of  the peri- 
odicity (h) 2 of the twinning lattice and that of  the host 

lattice. The latter is 2 for centered lattices, and 4 for 
the d iamond lattice, for which + ql + qz + q3 = 12N+ 1 
when glg2g3 are all even. Table 1 lists (q~qzq3) and the 
specific directions of  type { 111 } along which interstitial 
twinning points occur at displacements ½{111}, for the 
generalized reciprocal lattice cell given by allowing 
qa, qz, q3 to assume positive values less than 6. The 
combinat ions (qlq2q3) should be permuted, with cor- 
responding permutat ions of {111} to obtain all the 
points within the repeating unit.* The first and second 
sections of the table give the b.c.c, twinning lattice, 
the first and third the f.c.c. 

When (h) 2 > 3, n also assumes values greater than 1 ; 
(h) z may be taken as odd (if it is even, it is divided 
by two to give an odd integer) in equation (8); it is 
either a prime number  or a product of  prime numbers.  
Selection equations similar to (8.1) must  be derived 

* The essential information is actually comprised within a 
portion of the table, ql,q2,q3<3, which can be reflected suc- 
cessively in the three coordinate planes to give the complete 
twinning lattice. 

(g18283) all even 

(glg283) one even 

(glg2g3) all odd 

Table 1. Displacement vectors in {111} {211} twinning 

Host Selection 
lattice point rule 

(qlq2q3) + ql --- q2 --- q3 = 6N+ 1 
(111) + 1 + 1 + 1 (11 i)  
(311) 1 - 5  (lii) 
(511) 7 --5 --5 (111) 
(331) 7 1 1 (111) 
(531) 7 1 (11I) 
(333) 
(533) 11 1 - 5  - 5  ( l i d  
(551) 1 1 -11 (1il) 
(553) 13 7 (I 11) 
(555) - 5  - 5  - 5  (1ii) 
(100) 1 1 1 1 (111) 
(300) 
(500) - 5  - 5  - 5  - 5  (I11) 
(120) 1 1 (il  1) 
(320) 1 1 - 5  --5 (1il) 
(520) 7 7 (11 I) 
(122) 1 1 - 5  (11]) 
(322) 7 1 (111) 
(522) 1 - 5 - 5 (1 i i )  
(140) - 5  - 5  (lI1) 
(340) 7 7 1 1 (111) 
(540) 1 1 ( l i d  
(142) 7 1 - 5 (11 I) 
(342) 1 - 5  (lI1) 
(542) 7 1 -11 (11i) 
(144) 7 1 1 ( i l l )  
(344) - 5 - 11 (1 Ii)  
(544) 13 - 5 - 5 ( i i I )  

(200) 
(220) 
(222) 
(400) 
(420) 
(422) 
(440) 
(442) 
(444) 

+--ql +--q2 +- q3=6N+4 
--2 - 2  --2 - 2  ( I i i )  

4 4 (111) 
--2 --2 - 2  ( i l i )  
--2 --2 --2 --2 ( l l l )  
--2 --2 (I11) 

4 4 - 8  (111) 
- 8  - 8  ( I i l )  
- 2  - 2  (1ii) 

4 4 4 (11 I) 

~- {111 } Displacement 
vectors 
{111} 

( l i d  (i11) 
( i i i )  
(i11) (1il) 
Oi l )  (111) 
(1ii) 

(i11) (il i)  
(i11) (ili)  
(111) 
(i11) (111) 
(11i) ( l i d  

(111) (11i) 
(ili)  
(11i) (i11) 
(1 II) 
(1il) ( i i i )  
(i11) 
(11I) (II1) 
(iii) 
(11i) ( I l l )  
( I i i )  
( i  I i)  
(IIl) 
(il  1) (IiI) 
(111) (111) 
( i l r )  
(ili)  (Iil) 

(11i) ( I i l )  
(111) 
(1iT) (T11) 
(111) (111) 
(11i) 
(1il) (iii) 
(ii1) 
(i11) 
(111) (111) 

(ii1) 

(1ii) 

( i i i )  

( i i i )  

( I l i )  

(111) 

(11i) 
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specifically for each value of (h) 2 [or (h)2/2]. As exam- 
pies, let {hzh2h3}={221} and {123} for which (h)2=9 
and (h)2/2=7; n assumes values 1,2,3,4, and 1,2,3, re- 
spectively. Since all terms in equation (8) are integers 
and (h) 2 is odd, for n = 2 [(p)2_ (q)2] must be a multiple 
of 4. When n=3 ,  the two examples diverge, because 
(h)2/3=3 for {221}, and 7/3 for {123}. In the latter 
case, [(p)2_ (q )Z] must be a multiple of 3; for [221] it 
must simply be odd as for n = 1. The value n = 4 does 
not occur for [123] for {221}, [(p)Z_(q)2] must be a 
multiple of 8. Such rules can easily be formulated in 
equations similar to equation (8.1). If (g~g2g3) are sub- 
ject to restrictions as in centered lattices, these equa- 
tions may be modified to other equations similar to 
equations (8.2) and (8.3) for n = 1. 

2.3 Twinning with double diffraction 
It has been pointed out (Burbank & Heidenreich, 

1960; Pashley & Stowell, 1963) that each interstitial 
point, if it is sufficiently close to the surface of the 
Ewald sphere, yields a new source beam and may be 
diffracted to produce a complete lattice. Since all values 
{hth2h3}=(-t- 1, + 1, + 1) occur for either f.c.c, or b.c.c., 
the generalized twinning plus double diffraction recip- 
rocal lattice is composed of a total of 9 lattices similar 
to the host lattice, including the latter. This lattice in- 
cludes all possible first generation twins. A portion 
l/a0(2 x 6 x 6) is shown in Fig. 1. 

2.4 Successive or multiple {111} twinning 

W.L.Bond (private communication) pointed out 
some years ago that successive twinning on two dif- 
ferent {111} planes is equivalent to single {221} (or 
{411}) twinning. Thus, twinning on (111) followed by 
twinning on (i11) gives 

, 4 4  
= ~ 1  x 2 ~ = ~ 7 4  

T=T(ln)Tcin) ½ 72 2 72 1 7~ ~ 1 

Changing the signs in the first column, this becomes 

li 44, ~ which is T(~z2 ) . 

Bond expanded this concept to third and fourth gen- 
eration twinning. If all three planes in third generation 
twinning are different, the product matrix is that of a 
{721} plane. If the third twinning vector is the same 
as the first, the product matrix is equivalent to that 
of a {511} (or {552}) plane. T{721} is not equivalent 
to Tt51~ even though the groups are orthogonal. Bond 
showed that the {721} planes produced by such triple 
twinning are not composition planes. Fourth genera- 
tion twinning can yield matrices equivalent to {744}, 
{877}, and {1154}. The last of these is a group not 
orthogonal with {744}. 

026 046  066 

004 \ ~ / ~  / ~ i  ~ i 

, ~ I ~ % z64 

0 0 2 ;  " ' i L , . , ~ !  ' 

ooo:  . i "  \ ,  , I i . ,  \ 1  ; ~ . . ~  ~ ,  

200 2 2 0  2 4 0  260 
Fig. 1. Portion (2 x 6 x 6) of generalized lattice; complete unit is (6 x 6 x 6) for centered lattices. Solid circles: f.c. host lattice 

points; solid triangles: {111 } {211 } twin points; + : double diffraction points. 
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Cubic symmetry requires that  the matrices for {100} 
and {110} twinning be equivalent to 1. Any number  
of successive twinnings yields simply the host lattice. 
Successive {111} twinning results in additional rel- 
points in the lattice. Considered as single {221} twin- 
ning, it permits values of n = + 1, + 2, + 3, + 4. The sec- 
ond generation lattice with double diffraction includes 
the first, which corresponds to n = 3 .  This process is 
iterative for each generation. The final resulting recip- 
rocal lattice is large and complex even when only 
second generation twins are admitted. Since there are 
24 [221] directions if both positive and negative are 
counted separately, each q-vector terminus is surround- 
ed by 24 twinning or multiple diffraction points at 
fractional distances 1/3a0 plus others at greater distan- 
ces. For  centered lattices, the periodicity is 18; i.e., 
the size of the repeating unit is 18/a0. 

Twinning on more complex planes such as {123}, 
with double diffraction, also results in a very complex 
lattice. Each host-lattice poinl~ is surrounded by 48 
points at distances 1/I/3"5 a0 along {123} directions 
plus others at greater distances. The complexity is com- 
parable with that  of first and second generation {111 } 
twinning. The repeating unit has size 14/a0. 

2.5 Diffi'action patterns for  twinned crystals 
A section through the generalized reciprocal lattice 

gives the planar array of spots which may be found in 
an electron diffraction pattern formed by transmission 
through a thin crystal. Unless the crystal is very thin 
the heights of  the diffraction spikes are inadequate to 
reach the surface of the Ewald sphere and 'film buck- 
ling' is postulated to account for the host lattice spikes 
observed. This amounts  to permitting replacement of 
the planar section by a slice of finite thickness. Figs.2 
and 3, for [110] and [111] directions of incidence, show 
the relpoints within slices of  thickness + 1/3a0 and 

~o~ ~,3 

+ 2/3l/3a0, respectively. In the {111 } case, still more  
points would occur if the slice were thicker. (Parenthe- 
tically, it should be noted that  double diffraction spots 
within the slice may be associated with twin spots out- 
side it; since the latter do not yield spots (i.e., additional 
'pr imary '  beams), such double diffraction spots have 
been eliminated.) 

3. Noneubic systems 

The matrix (3) is general, and can be used for twinning 
calculations in any crystal system. The resultant gen- 
eralized reciprocal lattice is nonperiodic and of infinite 

0 0 6  

.,~...- +7 ~ .o. ~ -+ -  +-/- 

\ / . \ : . I > % : .  / 

~]o ~o iio ooo ,7o z~.o ~o 

Fig. 2. Array of generalized reciprocal lattice points in (110) 
plane; solid circles" f.c. host lattice points" solid triangles: 
{Ill} or {211} twin points; + :double  diffraction points. 
Short lines through (3~1) are lattice vectors _+ ½(Tll), 
_+ ½(11 1). Vectors _+ ½(111 ), _+ ½(11 ]') terminate at projected 
positions (glg2[g3 +_ ½]), glg2g3 all odd (×). Vertical com- 
ponents of these vectors are __ ½, compared with interplanar 
spacing 1/2. Dashed lines show the rotated lattices on which 
twin points appear. Thin lines show 4 host lattices on 
which twin and double diffraction points are located. 

Y ±rht) T23 o33 

I - - -  I - x o x A o • x x "~ " l ' / ~  ) / I l l  ) 
• ~-- ( I I I }  ~-  { I I I )  5 

--~-- It - ~ -  ' Y ~ X v ~ X 
3 3 0  2 2 0  I10 0 0 0  I10 220  330 

- -  4- - -  + + ~ + + 

Fig.3. Generalized reciprocal lattice points in and near a l l l )  plane. Host lattice points (solid circles) define reference plane; 
interplanar spacing is 2/1/3. Unoccupied sites (open circles and squares) are in planes displaced vertically + 1/1/3. Twin 
points (solid triangles) are in planes at +2/31/3. Associated displacement vectors ½{111} are shown in projection in small 
diagrams. Double diffraction points (+,  × ) are also in these planes. Pattern has threefold symmetry around the (vertical) 
direction 0 i l )  and also centrosymmetry, so it is symmetrical across the (512) line, and across a {110} line with interchange of 
above and below positions. 
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size unless special relations exist between the metrical 
coefficients m~S and the twinning planes {hlhzh3} so that 
the T-matrix components are ratios of integers. The 
symmetry of the crystal may lead to certain equiv- 
alences, as in the cubic system. In general, each crystal 
must be considered separately but some crystals in the 
hexagonal system have axial ratios close enough to 
the theoretical close-packed value ]/8/3 so they can be 
treated as a group. 

3.1 The hexagonal matrix 
The direct and reciprocal metrical matrices for the 

hexagonal system are: 

0 
0 

mi~ = 
0 0  

2 m i J  = 

0 
0 

0 0 (al/  
\ a3 / 

(9) 

The twinning matrix is 

3.2 Rhombohedral crystals 

Rhombohedral axes, here designated (blbzb3), are 
isometric. The matrix A and its inverse A-x 

A =  1 1 1 A-I=½ 
i l l  

transform (ihb2b3) to face-centered axes (a~a2a3) and 
vice versa. The axes (alaEa3) are isometric; they are 
orthogonal and hence cubic if the rhombohedral angle 
e = 6 0  °. The transformation 2A -1 applied to (blbEb3) 
yields body-centered axes, cubic if c~= 109.5 °. If A is 
applied to a crystal with e near 60 °, the result is a 
pseudo-cubic face-centered structure, for which twin- 
ning on cubic planes can be assumed as a first approx- 
imation. The displacements of the interstitial twinning 
points from their cubic positions can then be calculated. 
A similar procedure using 2A -~ would apply if e were 
near 109.5 * 

with 

T =  
3(h) z 

()2 
3 ax hi 

(hi + 2hz)hl (Oa ) 
- f  h3hx 

3(h) 2 3 (a~)" 
4 - (h~)2+(hz)Z+hxhz + - 4  ~3 (h3)Z" (11) 

T is not symmetrical as in the cubic case, but T -a = T 
so Ttr operates on the coefficients o f  relveetors. 

3.11 The close-packed hexagonal system (a3/al = V ~  
In general, the terms inside the matrix signs must 

be multiplied by 32 to become integral. The scalar 
multiplier becomes 1/24(h)2; the periodicity (and size 
of repeating unit) is 24(h) 2. 

The h.c.p, system is composed of two simple hexa- 
gonal structures with one fiducial atom at [000], and 
the other at either [½2½] or [3z~]. Neither can be 
transformed to a simple primitive lattice; but one is 
the mirror image of the other in the basal plane. The 
host reciprocal lattice has unoccupied sites when g3 is 
odd and (gl+2g2), and hence also (2gl+g2), is a mul- 
tiple of three. Either lattice has periodicity 3 in the 
basal plane and 2 along the hexagonal axis. With (001) 
twinning, both lattices are present and the only un- 
occupied sites are those for which both gl +2g2 and 
2g~ +g2 are multiples of 3, and g3 is odd. For (hlh20) 
twinning, no fractional relvectors occur when (hOE+ 
hlh2+(h2) 2= 1, i.e., for (100), (010), ( i i0);  if (2hi+h2) 
and (h~ +2h2) are both multiples of 3, each term in the 
matrix has a factor 3, and no fractional relvectors occur 
for (110), (i20). The planes discussed are the most 
probable twinning planes, but twinning on many other 
planes does yield fractional relpoints. 

(2hl + h2)h2 

hl-h -  

(2hl + h2)h3 

(hi + 2h2)h3 (10) 
3 aa 2 3(h) 2 3 al h~ 
~ h3h2 4 ~- -2 

The periodicity of the generalized lattice is not 6, 
as in the cubic case, but is large and probably infinite. 
This means that the displacement from the cubic posi- 
tion increases as the point under consideration goes 
farther from the origin. Double diffraction then results 
in groups of points close together, near each cubic 
interstitial relpoint in the generalized lattice. 

The lattice (ala2a3) is also rhombohedral, though 
face-centered. The transformation A could be applied 
to it, which is the same as applying the transformation 

i l  
A2= ~ 3 i  

to (bxbzb3). If e = cos -1 ~ = 33 o 35', the transformed lat- 
tice is cubic. Similarly, ifA 3 is applied, the transformed 

21 _ 17 o 21'. Rhombohedral lattice is cubic if e--cos -x ~ -  
crystals with such a small angle are very rare; however 
the transformation A 2 may in some cases be useful in 
producing a pseudo-cubic structure. 
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